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We construct a bridge between the standard diffusion-to-traps mathematical 
model of stretched exponential relaxation and the modem experimental 
database on both electronic and structural relaxation. 

KEY WORDS: Diffusion; traps; stretched exponential; relaxation; 
Kohlrausch; electronic; structural. 

Stretched exponential (Kohlrausch, 1847) relaxation, exp[ - ( tP) ] ,  fits 
many relaxation processes at intermediate frequencies (below and near the 
primary relaxation peak frequency) in disordered electronic and molecular 
systems, but it is widely believed ~'2~ that no microscopic meaning can be 
assigned to 0 < fl(T) < 1 even at T = Te, a glass transition temperature. We 
show that fl(Tg) can be understood, providing that one separates extrinsic 
and intrinsic effects, and that the intrinsic effects are dominated by two 
magic numbers, flSR=3/5 for short-range forces, and i lK=3/7 for 
long-range Coulomb forces, as originally observed by Kohlrausch for the 
decay of residual charge on a Leyden jar/3) Our mathematical model treats 
relaxation kinetics using the Lifshitz-Kac-Luttinger diffusion-to-traps 
depletion model, t4~ which gives fl=d/(d+2). Here the effective dimen- 
sionality d of the configuration space in which relaxation takes place must 
be analyzed in the context of a theory which is capable of defining the 
glassy state and which has proved its physical relevance by predicting the 
composition dependence of the glass-forming tendency in simple systems. 
That theory is Phillips-Thorpe constraint theory, which is based on elastic 
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stiffness percolation, and which correctly predicts the glass-forming 
tendency and related stiffness thresholds in chalcogenide alloy network 
glasses/5J The central concept which motivates the Phillips-Thorpe 
analysis is axiomatic set theory, which leads to the two values of fl quoted 
above. 

Within the last decade there has been a rapid and impressive expan- 
sion of the database on Kohlrausch relaxation parameters in a wide range 
of physical systems. The older broad-band macroscopic relaxation 
experiments (dielectric and mechanical) have been systematically organized 
from a phenomenological point of view by B6hmer etal )  2) In these 
experiments the intrinsic behavior can be masked by extrinsic effects 
associated with surface contacts, especially for dielectric relaxation. 
Another source of extrinsic effects is partial submicrocrystallization. The 
extent of the intrinsic/extrinsic content of macroscopic relaxation data can 
now be determined because microscopic experiments, without contacts in 
noncrystallized materials and on time scales typically 10 6 faster, have been 
completed on many systems. The most direct data have been obtained 
using time-resolved spin-echo techniques with spin-polarized neutrons, 
which provide pulses of energy and momentum and which also monitor the 
ensuing relaxation.(~) 

The data examined span about 1000 papers on both electronic 
materials, such as a-Si:H, a-C6o , TaS3, spin glasses, and vortex glasses 
in high-temperature superconductors, as well as molecular materials, 
encluding include polymers, network glasses, alcohols, van der Waals 
supercooled liquids and glasses, and fused salts. In the intrinsic cases the 
theory of fl(Tg) is often accurate to 2%, which is often better than the 
quoted experimental accuracies of ~ 5 0 .  The extrinsic cases are identified 
by explicit structural signatures which are discussed at length. The discus- 
sion also includes recent molecular dynamical simulations, which have 
achieved the intermediate relaxed Kohlrausch state and which have 
obtained values of fl in excellent agreement with the prediction of the 
microscopic theory. 
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